N N N M N T N T T I MV T TN T T T T T T T i iyt

3.2 DESIGN CONCEPTS

Every intellectual discipline is characterized by fundamental concepts and
specific techniques. Techniques are the manifestation of concepts as they apply to
particular situations. Fundamental concepts of software design include

Abstraction 4 Modularity 1 Refinement
Software architecture 4 Information hiding 1 Concumency
Verification 1 Control hierarchy 1 Date Structure
Structural Partiticning 4 Functional 1 Refactoring
Object-Oriented Design Independence

Concepts 1 Design Class

3.2.1 Abstraction:

An abstraction is an intellectual tool that allows us to deal with concepts apart
from particular instances of those concepts. It permits separation of conceptual
aspects of the system from implementation details. In offering a modular solution to
any problem, many levels of abstraction are possible such as

A higher level of abstraction: Solution is stated using the language of problem
environment.

The lower level of abstraction: a Procedural approach which can be
implemented.

Abstraction Mechanisms

There are three widely used abstraction mechanisms such as

1. Functional Abstraction: It involves the use of parameterized subprograms. These
mechanisms allow us to control the complexity of the design process by
systematically proceeding from abstract to concrete. (eg. packages in ADA,
clustersin CLU)

2. Data Abstraction: It involves specifying a data type (or) data object by specifying
the legal operations on objects. Many modem programming languages provide a
mechanism for creating abstract data types which are used to denote declaration
of data type (such as STACK, LIST)

3. Control Abstraction: Implies a program control mechanism without specifying
internal details. An example of contrel abstraction is the synchronization
semaphore used to coordinate activities in an operating system. Control
abstraction permits specification of sequential subprograms, exception handlers,
and coroutines without the exact details of implementation.

3.2.2 Modularity

The software is divided into separately named and addressable components
often called modules that are integrated to satisfy problem requirements. Modularity
helps in system debugging— isolating the system problem to a compoenent is easier if
the system is modular. For modularity, each module needs to support a well-defined
abstraction and have a clear interface through which it can interact with other modules.

Modularity = ABSTRACTION + PARTITIONING
Desirable Properties of Modular System

1. Each processing abstraction is a well-defined subsystem that is potentially
useful in other applications.

Each function in each abstraction has a single, well-defined purpose.
Each function manipulates no mere than one major data structure.

Function share global data selectively.

o osE WM

Modularity enhances design clarity which in turn eases implementation,
debugging, testing, documenting and maintenance.

Modularity is the single attribute of software that allows a program to be
intellectually manageable. The number of control paths, a span of reference, number of
variables and overall complexity would make understanding close to impossible. To
illustrate this, consider the following argument based on observations of human
problem-solving. Let C(x) be a function that defines the perceived complexity of
problem x, and E(x) be a function that defines the effort (time) required to solve a
problem x. For two problems P1 & P2 if



p— WTTITFT AN = B

C(P1)>C(P2) EP1)>EP2)
As a general case, this result is intuitively cbvious and it takes more time to
solve a difficult problem.
Another characteristic through experimentation is
C(P1 +P2) > C(P1) +C(P2)
(i.e) the perceived complexity of a problem that combines P1 & P2 is greater
than the perceived complexity where each problem is considered separately.
Considering expression and the condition wiped by expressions, it follows that

EP1+P2)>E(P1)+ EPD)

Cost or Effort

Fig. 3.1 Modularity and Software Cost

This leads 10 a “divide and conquers” condlusion - it's easier to solve a complex
problem when it is broken into manageable pieces. Refering to Fig 3.1, the effont
(cost) 1o develop an individual software module does decreases as the total number of
modules increases. Given the same set of requirements, more modules mean smaller
individual size However, as the number of modules increases, the effort assocated
with integrating the modules also grows. These charactenistics lead to a total cost (or)
effort curve shown in Fig. 3.1. There is a number M, of modules that would result in
minimum development cost but we do not have the necessary sophistication to predict
M with assurance. The curves provide useful guidance when modularity is considered.
Modularization should be done with care to be taken to stay in the vicinity of M.

Criteria for an effective modular system

Softy " g 15

d

. Modular Decomposability The design method should provide a systematic
mechanism for decomposing the problem into subproblem to reduce the
complexity of the overall problem

2. Modular Composability The design method enables existing (reusable) design
components 10 be assembled into a new system

3. Modular Under stability The module should be easiy under stable to build and
charge.

4. Modular Continuity: f small changes to the system requirements result in
changes 1o individual modules, rather than system-wide changes, the impact of
change - nduced side effects will be mnimized.

5. Modular Protection: If an abemant condition exists within a module and its
effects are constrained within that module, the impact of error-induced side
effects will be minimized.




3.2.3 Refinement

Stepwise refinement is a top-down design strategy in which a program is
developed by successively refining levels of procedural detail. In each step, one (or)
several instructions of the given program are decomposed into more detailed
instructions. The refinerment terminates when all instructions are expressed in terms of
any underlying computer (or) programming language.

Refinement is a process of elaboration which causes the designer to elaborate
on the original statement.

Abstraction and refinement are complementary concepts. Abstraction enables a
designer to specify procedure and data and yet suppress lowdevel details. Refinement
helps the designer to reveal lowdevel details as the design progresses.

3.2.4 Software Architecture

Architecture is the hierarchical structure of program components, the manner in
which these components interact and structure of data of the components. One goal of
software designisto derive an architectural rendering of a system.



3.2.6 Information Hiding

Information hiding is the fundamental design concept for software. The
principle of information hiding suggests that modules be specified and designed so
that the information (procedure and data) contained within a module is inaccessible to
other modules that have no need for such information.

Elements for Information hiding

1. A data structure, its internal linkage and the implementation details of
procedures that manipulate it (Data Abstraction)

2. The format of control blocks
3. Character codes, Ordering of character sets and other implementation details.
4. Shifting, masking and other machine dependent details.

The use of information hiding as design criteria provides benefits where
modifications are required during testing (or) during software maintenance.



3.2.10 Functional Independence

Functional independence is the direct outgrowth of modularity and the concepts
of abstraction and information hiding. Functional independence is achieved by
developing modules with single-minded function with no interaction with other
modules. Software with effective modularity (i.e.) independent modules is easier to
develop because functions may be compartmentalized and interfaces are simplified.
Independent modules facilitate

Reduction in error propagation

Reusability

Easy maintenance and testing
Independence can be measured using cohesion and coupling.
3.2.11 Object-Oriented Design Concepts

The objectoriented (00) paradigm is widely used in modern software
engineering. These design concepts such as classes and objects, inhertance,
messages, and polymorphism, among others are widely prevalent



